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Abstract— Because it is expensive and time-consuming to constantly purchase, program, test, and use new programmable logic 
controllers (PLCs), many factories continue to use possibly insecure legacy systems. The PLC error detection and correction method 
described in this letter makes use of shifted time redundancy, which is made possible by a complete crossbar connection network. Its 
goal is to successfully identify, isolate, and mitigate cybersecurity threats and malfunctions in PLC devices in a manufacturing 
environment where identical tasks are completed by numerous assembly lines operating in parallel. Each PLC's trustworthiness is rated 
using a trust scoring system, which also lowers required overhead. 

 

I. INTRODUCTION 

VER the last few decades, assembly line systems and industrial processes have become more advanced, requiring 

more precise timing and control, and as a result have matured from human controlled processes to automated systems. With 

the advent of the micro-controller and embed- ded systems, programmable logic controllers (PLCs) presented an absolute step 

change to the manufacturing sector, allowing precise control to automate industrial processes and react to system fluctuations 

in real time. While the newer generation of PLCs presents significant advantages over legacy systems, companies are faced 

with a difficult tradeoff; purchase new devices and undergo a complicated and expensive replacement process, or continue 

working with legacy devices, slowly pay- ing more over time as the legacy PLCs are less efficient, less precise, and more fault 

prone and unsecure. As PLCs age, they are more likely to experience random faults [1]. More crucially, they are opened to 

new attack vectors within the cybersecurity realm as a result of networking and modular 

design. 

As with system-on-chip design, PLC design has become outsourced to third party design houses which produce intel- lectual 

property licensed by system integrators and make a customizeable chip for use in the PLC. The designed chip is 

produced by a fabrication facility and then deployed to the customer. At any other point in this supply chain malicious logic 

(usually known as hardware Trojans) can be embed- ded into the device. which could be so well hidden that even extensive 

testing fails to discover it. 

Furthermore, as PLCs became more advanced, they were naturally networked together to facilitate advanced monitoring or 

control from remote locations. While these manufacturing and industrial networks are encouraged to be “air-gapped” (not 

connected in any way to the Internet as a whole) for security, not all of them are, and in some cases, such as the infamous Stuxnet 

malware [2], poor employee security practices can allow malware to “jump” the air-gap through the use of USB flash drives or 

other devices. In a factory or manufacturing setting this can cause massive economic loss or critical safety situations where human 

operators are endangered. 

To handle errors in PLCs, one implementation [3] utilizes a single redundant sensor to provide stronger reliability to a 

geothermal system. Another group [4] utilizes three PLCs in a triple-modular-redundancy (TMR) configuration to control a 

heater in an industrial process. The work in [5] departs from these standard ideas and examines the control flow of the PLC, 

building a model and checking for control flow errors. The work in [6] takes a more nuanced look at the possible failure points 

within a PLC and suggests the areas to be improved for reliability enhancement. While these works are effective in their own 

measure, they add overhead to the system or are too nuanced to be broadly applicable to factories. 

This letter aims to successfully detect, isolate, and mitigate cybersecurity attacks and faults and in legacy PLCs. It focuses on a 

setting where multiple parallel assembly lines complete the same task, and proposes a solution which intelligently adds reliability 

to the setting via shifted time redundancy. A trust scoring system is also utilized to develop a novel “recy- cling” step, which 

prevents devices from being completely removed from the system if they only experienced a random transient fault. Individual 

PLCs not only can be abstracted from an assembly line but also are treated as nonpermutable blackboxes, allowing for both broad 

compatibility and the potential for in-place piecemeal upgrades. The proposed PLC management solution has the following 

properties. 

1) Increased Reliability: Jobs are executed on multiple redundant PLCs while meeting real-time constraints. 

2) Low Hardware Overhead: The proposed shifted time redundancy enables multiple executions per output value but with 

fewer active PLCs. 

3) High Compatibility: The proposed solution is suitable for legacy devices wherein it is impossible or impractical to modify 

PLC code. 
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Fig. 1. Framework overview. T is the data sensing interval, s1–s4 represent sensors in each assembly line, and A, B, C, and D are different PLCs. 

 

The rest of this letter is presented as follows. Section II discusses the proposed design, Section III details testing and results, and 

finally Section IV concludes this letter. 

 
II. PROPOSED FRAMEWORK 

This section presents the proposed framework which aims to detect, isolate, and mitigate cyber attacks and faults in assem- bly 

lines while satisfying the system’s real-time constraints and minimizing the hardware overhead. An overview of the framework is 

first provided, followed by a detailed description of its major parts. 

 
A. Framework Overview 

This letter is developed for a factory system with N assem- bly lines, each of which is equipped with a sensor, an actuator, and a 

PLC. The system performs the following process itera- tively: data sensing, where the input from each line’s sensor is gathered and 

sent to a PLC; data processing, where a PLC exe- cutes the latest assembly line’s job based on the latest sensed input; and activating 

actuators, where the PLC output is used to activate the actuator. Outputs need to be ready before the new inputs are sensed. In other 

words, there is a real-time constraint T for the system which equals to the sensing interval. 

The proposed framework detects, isolates, and mitigates faults and/or cyber attacks in assembly lines: 1) applying a shifted 

time redundancy algorithm to efficiently schedule redundant jobs on a series of PLCs; 2) using a nonbinary majority voting to 

detect faults; 3) isolating and mitigat- ing faults by selectively re-executing jobs; and 4) tabulating trust scores for PLC recycling 

and overhead reduction. Fig. 1 presents an overview of the proposed framework with four parallel assembly lines. 

One advantage of the proposed framework is that it treats each PLC as a black-box and hence is compatible with many systems, 

especially those ones where the underlying PLC code cannot be modified. The framework incorporates a glue logic to produce the 

correct output for each assembly line’s actuator, as shown in Fig. 1. The glue logic schedules jobs in the assem- bly lines following 

the shifted time redundancy scheduling algorithm, aiming to minimize hardware overhead. The logic also includes nonbinary 

voters to perform majority voting on(b) 

 
Fig. 2. TMR uses 3N PLCs to control N assembly lines, while time redun- dancy uses N PLCs but can only handle transient faults. (a) Traditional TMR. 
(a) Time redundancy. 

 
the PLC outputs and a set of counters to track the trust score of each PLC. A further function of the glue logic is to control 

accesses to hot-standby PLCs, sorted in descending order of their individual trust scores. Fig. 1 shows a hot-standby pool with 7 

PLCs (E K) in which G is the most trusted. These PLCs can be used to replace untrustworthy PLCs running in the system. 

It is important to deliver the inputs and outputs of the PLCs to the glue logic in a timely manner. To this end, the framework 

adopts the following two implementation policies. First, two full crossbar networks are utilized in the design, one on the input 

side and one on the output side. Fig. 1 shows an example of the input crossbar network. It is able to deliver the input of each 

assembly line to any PLC device either active or in the hot standby pool. Similarly, an output crossbar network connects PLC 

outputs to the majority voter of each assembly line. Second, the system adopts a two-level scheduling policy; a single master 

process (i.e., the glue logic) schedules PLCs to assembly lines, while the assembly line processes act as the slaves in the system 

and ensure the timely execution and data handling for their assigned PLCs. The master process utilizes the voting information 

returned by the assembly lines to adjust PLC trust scores and move PLCs into or out of the hot-standby pool. 

To better understand the constraints of this design, we state our assumptions below. 

1) While faults may appear in any device, they manifest in different ways. Two devices will never have the same faulty output 

for the same input. 

2) Once activated, faults/attacks present themselves at the output of the device and can be either transient, specific to a single 

input or sequence of inputs, or permanent. 

3) There exist enough PLCs to utilize as hot spares that can be brought on and offline on demand. 

4) The logic is assumed to be secure and fault-free as it is designed in-house on a highly reliable device. 
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B. Shifted Time Redundancy 

A conventional TMR system requires at least three redun- dant versions of a job to successfully detect and recover from one 

fault. For a system with N assembly lines, traditional TMR requires 3N PLCs in total. Time redundancy, on the other hand, requires 

N PLCs to control N assembly lines, but is only able to tolerate transient faults. Fig. 2 shows a concrete example comparing these 

two schemes. 

The shifted time redundancy outperforms time redundancy by providing hardware redundancy to each assembly line. It 

looks at the scheduling problem from a different point of 

 

 
 

 

 

 
 

 

 

 

 
Fig. 3. Standard execution process flowchart for jobs on PLCs. 

 

 
view. Since all the PLCs in the system perform the same func- tion and there is no dependency among jobs, an assembly line can 

be controlled with any PLC. Hence, the problem of scheduling jobs to PLCs can be converted to the problem of assigning different 

PLCs to different assembly lines. Fig. 1 presents a concrete example showing how PLCs are shifted across different assembly 

lines. In the first execution slot, the four PLCs A–D are, respectively, assigned to lines 1–4. In the second slot, A is shifted to line 

2, B to line 3, C to line 4, and D to line 1. Finally, in the third slot lines 1–4, respectively, uses PLC C, D, A and B. Only N 

PLCs are needed to con- trol N assembly lines, while within each sensing interval the redundant jobs on each assembly line are 

executed by differ- ent PLCs, thus achieving hardware redundancy and allowing the detection of both random errors and cyber 

attacks. 

Assume a system with N assembly lines and M PLCs (M > N). T is the system sensing interval and t is execution latency of 

a job. Within each sensing interval there are S execution slots  slot1, slot2,..., slotS  and S  T/t . To reach shifted time 

redundancy, the PLC to line assignment in each sensing interval T should satisfy the following constraint. 

1) At slotk (k    1), Pi (1     i     N) executes the job of line 

(i   k    1)%N. 

2) Let (Li, Pj)slotk be 1 if and only if PLC Pj is assigned to line Li at slotk. The overall assignment should satisfy 

k=SFig. 4.    Example of different fault scenarios. 

 

the nonbinary voters1 provided by the glue logic. The system enters one of the following scenarios based on whether the results 

of the first two copies agree or not. 

No Fault Scenario: If the voter shows no mismatch between the two redundant copies, the agreed value is sent to the cor- 

responding actuator as the correct output and there is no need for assigning a third PLC to the assembly line. Fig. 4 shows an 

example of this scenario in line 1. The voting process exe- cuted at time t 2 shows agreement between the results of A and 

D. Upon finishing the voting, there is no need to assign another PLC to line 1 to execute the third iteration of the job. Faulty 

Scenario: If the results of two redundant executions do not agree, the glue logic schedules another redundant job copy in the 

third execution slot following shifted time redun- dancy. Fig. 4 shows an example of this scenario in line 2. The voting process 

shows a disagreement between the results of B and A, and PLC D is scheduled in the third slot to mitigate the detected fault. 

Once the fault is located, the trust score of the faulty PLC is decremented. If the trust score drops below the trust score of 

the most trustworthy hot-standby PLC, it is replaced by the latter. Note that the framework provides the ability to mitigate 

more than one fault via assigning multiple PLCs in the third time slot, but the choice is left to the system 
supervisor. 

In summary, the proposed fault tolerance framework com- bines the advantages of both TMR and time redundancy. On one 

hand, it provides the same fault tolerant capability as TMR as it is able to detect and mitigate N faults, one per assembly line. On 

the other hand, same as time redundancy, the proposed work only imposes minimum hardware overhead, i.e., N PLCs are shared 

by N assembly lines. 

 
D. Recycling Hot Standby Pool 

As PLCs become labeled untrustworthy, they will neces- 

∀i, j (Li, Pj)slotkk=1 1.sarily be moved to the hot standby pool and be replaced by more 
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trustworthy PLCs. The hot standby pool is kept sorted to ensure that the system can quickly find 

and utilize the most 

This assignment rotates a PLC across N assembly lines one by one. In other words, for up to S (S N) consecutive timing slots, a 

PLC will not be assigned to the same assembly line twice. Furthermore, the assignments in the first two slots are purely given by 

the constraint, while at slot3 and later PLCs are assigned to lines only if needed. If more than one PLC is available, the most 

trustworthy PLCs will be used. 

 
C. Fault Detection, Isolation, and Mitigation 

The procedure of detecting, isolating, and mitigating cyber attacks and faults is represented in the flowchart of Fig. 3. 

Once the first two copies of a job are finished at the end of the second execution slot, the two results are compared 

usingtrustworthy PLCs. 

As we make the optimistic assumption that faults caused by cybersecurity threats may not be permanent, PLCs in the hot 

standby pool are periodically tested to determine whether their faults were temporary. These PLCs are tested by schedul- ing them 

into empty execution slots on an assembly line with no faults. If a PLC agrees with the agreed value, its trust score is 

increased. If the PLC produces a different output, it is marked as permanently fault and removed from the system. For each 

failed device, the exact inputs that caused it to fail 

1A nonbinary voter [1] with a predefined margin of error σ counts two input values in1 in2 as agreeing if in1   in2    σ . The value of σ can be 

adjusted to loosen or restrict the error margin. A σ of 0 results in the functionality of a binary voter. 
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Fig. 5. Hardware setup overview. 

 
are recorded. This provides the ability to potentially deter- mine specific triggers for each device (if the fault is the result of a 

triggered Trojan) and adapt with this knowledge, test- ing whether the device continues to fail on this input and necessitating its 

removal from the system. 

 

 
III. IMPLEMENTATION   AND   RESULTS 

The proposed fault tolerance framework was tested in both hardware and software environments. The hardware environ- ment 

(utilizing OpenPLC [7]) proved the feasibility and timing of the system, while the software environment tested different fault 

probabilities. 

 

A. Hardware Implementation 

The hardware-based implementation was completed with two Raspberry Pi 3s as shown in Fig. 5. One Raspberry Pi 3 was 

utilized as the “glue logic” and controller module. This device ran a python script that implemented the different parts of the 

algorithm, including scheduling, voting, and tracking of PLC trust scores. A second Raspberry Pi 3 device ran sim- ulated PLCs 

on an OpenPLC server. Both Raspberry Pi 3s contained a quad core ARM A53 running at 1.2 GHz. 

Testing in hardware was conducted by injecting faults via a python script that accessed the general purpose I/O pins on the 

Raspberry Pi and inverted them. Two permanent fault sce- narios were examined. The base case was a single fault in the active 

pool. To pass this test, the system must detect a mis- match between the values returned by two active PLCs (fault detection), 

schedule a third PLC to break the tie (fault mitiga- tion), and lower the score of the offending PLC and replace it with a PLC 

from the hot standby pool (fault isolation). In all tested cases, the system successfully captured this type of faults within the very 

first iteration of the program without any error. 

A far more difficult case was one fault in the active pool and one fault in the top rated hot standby PLC. To pass this test, the 

faulty PLC replacement must be executed twice. First, the faulty PLC in the active pool must be replaced. Since a fault was into 

the replacement PLC as well, the system must detect this fault at the next iteration and replace the PLC again. Again, this test was 

passed without any error, proving that the system was capable of executing each aspect of a fault tolerant assembly line controller. 
TABLE I 
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B. Software Simulation 

To test more advanced fault scenarios, a simulator was cre- ated. Within the simulator, PLCs can be adjusted to have a specific 

error model, assembly lines can have different input values to assign to each PLC, and the overhead of the system can be 

evaluated. 

To determine how the system reacted to permanent and tran- sient faults, simulator testing was conducted with different fault 

profiles as shown in Table I. The investigated situa- tion was 5 assembly lines with 5 standby PLCs running for 5000 iterations. 

Testing consisted of random transient faults and permanent faults. Results demonstrated that the proposed framework is able to 

mitigate faults with very high accuracy. With a 10% fault rate, which is excessive for random faults within a system, 97.4% of 

decisions were correct. When low- ering the fault rate, the system further improves to the point of a 99.9% success rate. The 

execution overhead is as low as 1.02N, with N denoting the number of assembly lines. 

 

 
IV. CONCLUSION 

In this letter, a system for identifying, severing, and lessening defects in blackbox legacy PLCs in an industrial environment was 

proposed. Utilizing a full crossbar, a trust scoring system, and a pool of hot standbys, we give an adaptive and low overhead 

dependable solution to the threat presented by legacy PLC controllers. The outcomes of the experiments demonstrated that the 

suggested architecture, which treated devices like a blackbox and used fewer redundant devices than TMR, could mitigate up to 

99.9% of injected defects. 
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